Present review article emphasizes use of various stem cell types, biological scaffold materials, genes and factors essentially required in wound healing, transplantation and regeneration of tooth implants. All recent developments in tooth engineering used for successful regeneration of tooth, induction of enamel and formation of dentin complexes are highlighted. In addition, genes, factors and minerals required in vascularization and maintenance of microenvironment for responsiveness to cells are also elucidated as most attractive candidates for regeneration therapy. Present review also elucidates use of stable and durable biodegradable polymer scaffolds materials and cementum/periodontal-ligament complex formation. There is a need to widen the horizon of bio-root engineering technology for successful repairing of tooth injuries and replacement of fractured or traumatized tooth. For this purpose, use of implantation of cultured stem cells, adhesion factors and biomaterials can provide stable attachment of dental implants. This review also sketch upon need of newer technologies and more adhesive biocompatible biomaterials for successful dental implants and enamel regenerative therapies.
Upadhyay RK